# EVALUATION OF THE ECONOMIC IMPACT OF THE CCP ASSAY IN LOCALIZED PROSTATE CANCER

E. David Crawford, Doria Cole, Nicolas Lewine, Gary Gustavsen 1 - University of Colorado at Denver, Aurora, CO 2 - Health Advances, LLC, Weston, MA

#### INTRODUCTION

- Stratification of localized prostate cancer based on disease aggressiveness remains challenging, resulting in overtreatment of low-risk patients and under treatment of high-risk patients.
- ♦ A biopsy-based, cell cycle progression (CCP) gene expression assay (Prolaris®, Myriad Genetic Laboratories, Inc.) can aid physicians in predicting prostate cancer aggressiveness, leading to more appropriate patient management. 1,2
- ♦ The purpose of this study was to quantify the economic impact of the CCP assay on a US commercial health plan.

### METHODS

- A fact-based economic model was developed for a hypothetical cohort of prostate cancer patients with localized disease.
- Patients were followed in the model for 10 years with management and progression assumptions based on published clinical data and interviews with board-certified physicians.
- Total cost of care was calculated for a reference scenario (current clinical practice) and a test scenario where patient management was altered based on CCP test results (Tables 1-3).
- Cost inputs were established for each unit of care that a patient might undergo (diagnostic/surgical/radiotherapy procedures and pharmacological therapy) and costs were assigned based on published costs of care.
- Total cost of care was compared between the two scenarios to determine overall system economic impact.
- To assess the model's sensitivity, each input was changed in a way that lowered or increased cost savings and the overall cost savings was recalculated.

### RESULTS

- The CCP test reduced costs by \$2,850/patient tested over 10 years after accounting for test cost (Figure 1).
- For a health plan with 10 million members, this would translate to over \$16 million in savings with two-thirds of those savings achieved in the first year after testing (Table 5).
- ♦ The majority of savings came from increased use of active surveillance in AUA low- and intermediate-risk patients (Figure 2).
- Increasing the percentage of AUA Low-Risk patients receiving AS from 15% to 30% in the Reference Scenario reduced the cost savings to \$2,625 if taken from RP patients only or to \$2,056 if taken proportionately from RP and RT patients.
- No single model input, when changed within a range of values, caused the model to show that the test was no longer cost saving (Figure 3).
- Costs of the test scenario were never greater than the reference scenario, resulting in cost savings over the 10 years modeled.

## FIGURE 1. Source of Model Savings.



#### **TABLE 1.** Reference Scenario Clinical Treatment Paradigm.<sup>3-5</sup>

|                                                    | AUA Risk Group |              |      |  |
|----------------------------------------------------|----------------|--------------|------|--|
| Initial Treatment Modality                         | Low            | Intermediate | High |  |
| Active Surveillance                                | 15%            | 5%           | 0%   |  |
| Radical Prostatectomy Only                         | 45%            | 45%          | 35%  |  |
| Radiation Therapy Only                             | 35%            | 30%          | 10%  |  |
| Androgen Deprivation Therapy Only                  | 5%             | 15%          | 25%  |  |
| Radical Prostatectomy and Radiation Therapy        | 0%             | 2%           | 5%   |  |
| Radiation Therapy and Androgen Deprivation Therapy | 0%             | 3%           | 25%  |  |
| Total                                              | 100%           | 100%         | 100% |  |

#### **TABLE 2.** Test Scenario Clinical Treatment Paradigm.<sup>6</sup>

|                                                    | AUA Risk Group |              |      |  |
|----------------------------------------------------|----------------|--------------|------|--|
| Initial Treatment Modality                         | Low            | Intermediate | High |  |
| Active Surveillance                                | 69%            | 27%          | 0%   |  |
| Radical Prostatectomy Only                         | 16%            | 31%          | 18%  |  |
| Radiation Therapy Only                             | 13%            | 21%          | 5%   |  |
| Androgen Deprivation Therapy Only                  | 2%             | 10%          | 25%  |  |
| Radical Prostatectomy and Radiation Therapy        | 0%             | 6%           | 23%  |  |
| Radiation Therapy and Androgen Deprivation Therapy | 0%             | 5%           | 30%  |  |
| Total                                              | 100%           | 100%         | 100% |  |

#### FIGURE 2. CCP Test Annual Cost Savings.



#### **TABLE 3.** Cost Inputs for Reference and Test Scenarios.

|                          |                                       | Cost (USD)              | Source                                                 |
|--------------------------|---------------------------------------|-------------------------|--------------------------------------------------------|
| Test                     | CCP Test List Price                   | \$3,400                 | Myriad Genetics                                        |
| Initial Treatment        | Radical Prostatectomy                 | \$9,547<br>(Year 1)     | Medicare fee schedules and claims databases            |
|                          | Primary Radiation Therapy             | \$27,084<br>(Year 1)    | Cooperberg et al.<br><i>BJU Int</i> . 2013;111:437-450 |
|                          | Androgen Deprivation Therapy          | \$2,880<br>(Year 1)     | Medicare fee schedules and claims databases            |
|                          | Adjuvant/Salvage Radiation<br>Therapy | \$23,095<br>(Year 1)    | Cooperberg et al.<br><i>BJU Int</i> . 2013;111:437-450 |
| Monitoring Costs         | Active Surveillance                   | \$754<br>(Annual)       | Medicare fee schedules and claims databases            |
|                          | Post-RP/ RT Monitoring                | \$700-\$775<br>(Annual) | Medicare fee schedules and claims databases            |
| Advanced<br>Treatment    | Androgen Deprivation Therapy          | \$2,880<br>(Annual)     | Medicare fee schedules and claims databases            |
|                          | Castrate-Resistant Prostate Cancer    | \$92,192<br>(Annual)    | Medicare fee schedules and claims databases            |
| Medicare Scale-Up Factor |                                       | 125%                    | MEDPAC                                                 |

#### FIGURE 3. Model Input Sensitivity Analysis.

| Model Input                                                    | (A)<br>Base Case<br>Input | (B)<br>Conservative<br>Input | Per Patient<br>\$0 \$2,000 | t Cost Savings<br>\$4,000 \$6,000 | (C)<br>Aggressive<br>Input |
|----------------------------------------------------------------|---------------------------|------------------------------|----------------------------|-----------------------------------|----------------------------|
| % of AUA Low-Risk Patients<br>Managed by AS Progressing to Tx  | 30%                       | 40%                          | \$996                      | \$4,705                           | 20%                        |
| Number of Biopsies Per Year for Patients Managed by AS         | 0.5                       | 1.0                          | \$1,196                    | \$3,677                           | 0.25                       |
| % of AUA Low-Risk Patients<br>Managed by AS in Test Scenario   | 69%                       | 50%                          | \$1,498                    | \$3,246                           | 75%                        |
| Medicare Rate Adjustment for Private Payers                    | +25%                      | 0%                           | \$1,600                    | \$4,100                           | +50%                       |
| % of AUA Int-Risk Patients<br>Managed by AS in Test Scenario   | 27%                       | 20%                          | \$2,062                    | \$3,751                           | 35%                        |
| Cost of Treating CRPC                                          | n/a                       | 20%                          | \$2,291                    | \$3,409                           | +20%                       |
| % of AUA Int-Risk Patients Managed by AS in Reference Scenario | d 5%                      | 10%                          | \$2,319                    | \$3,358                           | 0%                         |
| Cost of Radiation Therapy                                      | n/a                       | 20%                          | \$2,400                    | \$3,300                           | +20%                       |
|                                                                |                           |                              |                            |                                   |                            |

To determine the model's sensitivity to individual inputs, inputs were modified from A) the Base Case to either B) a Conservative value or C) an Aggressive value.

#### **TABLE 5.** Economic Impact of Test on Costs to Payer.

|                                    | Number of<br>Localized<br>Prostate<br>Cancer<br>Patients | Number of<br>Tests<br>Modeled | Cumulative<br>Cost at Year 10<br>in Reference<br>Scenario | Cumulative<br>Cost at Year<br>10 in Test<br>Scenario | Cumulative<br>Savings at 10<br>Years per CCP<br>Test-Eligible<br>Patient |
|------------------------------------|----------------------------------------------------------|-------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|
| Per Patient Tested                 | 1                                                        | 1                             | \$64,464                                                  | \$61,849                                             | \$2,850                                                                  |
| Health Plan -<br>Million Members   | 3078                                                     | 2,824                         | \$198,420,121                                             | \$190,370,824                                        | \$8,049,296                                                              |
| Health Plan -<br>O Million Members | 6,156                                                    | 5,648                         | \$396,840,241                                             | \$380,741,648                                        | \$16,098,593                                                             |

#### CONCLUSIONS

- Use of the CCP test in a US commercial health plan has the potential to result in cost savings to payers.
- In this model, the CCP test reduced costs by \$2,850 per patient tested over 10 years. For a health plan with 10 million members, this would translate to over \$16 million in savings.
- Savings are due to increased use of active surveillance in low- and intermediate-risk patients, but also from reduced progression rates in high-risk patients with more aggressive disease who transition to multi-modality therapy.

#### REFERENCES

- 1. Cuzick et al. *Lancet Oncol*. Mar 2011;12(3):245-55.
- 2. Cuzick et al. *Br. J. Cancer.* Mar 13 2012;106(6):1095-9.
- 3. Barocas et al. *J Urol*. 2008;180(4):1330-1334.
- 4. Ghia et al. *Urology*. 2010;76(5):1169-1174.
- 5. Cooperberg et al. *J Clin Oncol*. Jun 1 2004;22(11):2141-2149. 6. Crawford et al. Curr Med Res Opin. 2014;30(6):1025-

Corresponding Author - David.Crawford@ucdenver.edu