

ASSESSMENT OF THE CLINICAL PRESENTATION OF PATIENTS WITH AT LEAST TWO PATHOGENIC MUTATIONS ON MULTIGENE PANEL TESTING

Jeffrey N. Weitzel,¹ Kathleen R. Blazer,¹ Bita Nehoray,¹ John Kidd,² Thomas P. Slavin,¹ Ilana Solomon,¹ Mariana Niell-Swiller,¹ Christina Rybak,¹ Jennifer Saam² 1) City of Hope, Duarte, CA 2) Myriad Genetic Laboratories, Inc., Salt Lake City, UT

BACKGROUND

- Technical advances have upended the established paradigm of testing high penetrance cancer predisposition genes based on syndromic features.
- National guidelines now include discussion of multigene panels.¹ However, significant gaps in our knowledge of gene-specific phenotypes have been identified, and the effects of various gene combinations is unknown.
- The aim of this analysis was to assess patients who underwent hereditary cancer predisposition testing with a 25-gene panel and were found to have at least two pathogenic mutations.

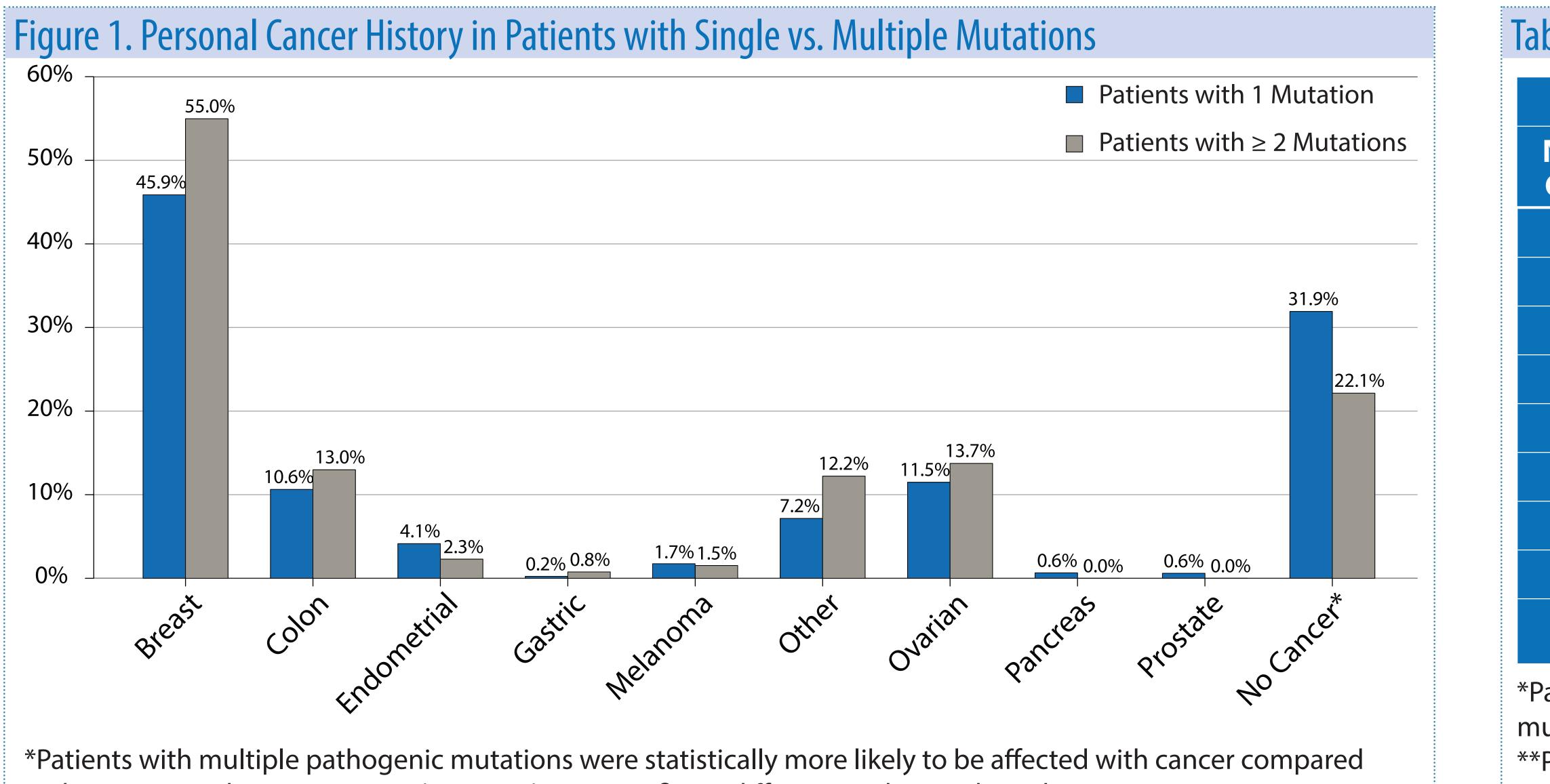
METHODS

Genetic Testing

- We examined results from 80,829 sequential patients tested with a 25 hereditary cancer gene panel in a CLIA certified laboratory.
- The 25-gene panel included APC, ATM, BARD1, BMPR1A, BRCA1, BRCA2, BRIP1, CDH1, CDK4, CDKN2A, CHEK2, EPCAM, MLH1, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, SMAD4, STK11, RAD51C, RAD51D and TP53.
- Sequencing and large rearrangement was performed for all the genes in the panel (large rearrangement only for EPCAM).

Patients with Multiple Mutations

- Patients with more than one pathogenic mutation were identified.
- Patients with biallelic *MUTYH* mutations were considered to have one high-penetrance gene condition and were included in the analyses if found in combination with another pathogenic mutation.
- 107 patients with a monoallelic *MUTYH* mutation and a pathogenic mutation in another gene were considered to have just one pathogenic mutation and were not included in the analyses.
- Clinical history was obtained from the test requisition forms submitted by health care provider report on.
- Phenotype manifestation was assessed in multiple mutation carriers by a team of cancer genetics clinicians to determine whether a patient's phenotype was consistent with one or both mutations.²
- Any cancer indicated in NCCN guidelines as associated with mutations in that gene was counted as consistent with the expected phenotype.


Statistical Methods

Pearson's chi-square tests were performed to determine a difference between affected status, multiple cancer status, and age of diagnosis across multiple mutation status. A p-value < 0.05 was considered statistically significant.

Table 1. Com

(1a) 1 Penetr RCA2 - 1 RCA1 - B RCA1 - P BRCA1-N RCA1 - / BRCA2 - N RCA2 - 1 PC - Bł APC - Bł PC-MS PC - CD RCA1 - C BRCA1-N BRCA1 - C BRCA1 - T BRCA2 - N RCA2 - (RCA2 - 7

*High penetrance genes are: APC, BRCA1, BRCA2, CDH1, MLH1, MSH2, MSH6, CDKN2A, PMS2, TP53, biallelic MUTYH ***MUTYH* is low penetrance in monoallelic state; biallelic *MUTYH* causes *MUTYH* associated polyposis (MAP), a highly penetrant recessive condition

with patients with one mutation (p=0.017). No significant differences observed in other comparisons.

nbinati	ions of (Genes in Patients v	vith Mu	Itiple Pathogenic	Mutatic	ns	
Two High nce Genes*		(1b) Two Moderate Penetrance Genes		(1c) Combination of High* and Moderate Penetrance Genes			
ons	Count	Mutations	Count	Mutations	Count	Mutations	Count
IS2	7	CHEK2 - PALB2	8	BRCA2 - ATM	8	PMS2 - ATM	2
CA2	6	ATM - PALB2	3	BRCA1 - ATM	6	PMS2 - PALB2	2
IS2	6	ATM - CHEK2	2	BRCA1 - BRIP1	6	BRCA1 - RAD51D	1
5H2	3	BARD1 - BRIP1	2	BRCA1 - CHEK2	б	BRCA2 - BARD1	1
<i>H6</i>	2	BRIP1 - CHEK2	2	BRCA1 - PALB2	5	BRCA2 - RAD51D	1
.H1	2	CHEK2 - RAD51C	2	BRCA2 - CHEK2	5	CDH1 - CHEK2	1
5H2	2	ATM - RAD51C	1	BRCA1 - NBN	3	CDKN2A - ATM	1
1	1	BARD1 - NBN	1	BRCA2 - PALB2	3	MLH1 - RAD51C	1
2	1	BRIP1 - NBN	1	BRCA1 - BARD1	2	PMS2 - BARD1	1
)	1	CHEK2 - RAD51D	1	BRCA2 - BRIP1	2	PMS2 - BRIP1	1
12A	1	NBN - RAD51D	1	BRCA2 - NBN	2	PMS2 - CHEK2	1
H1	1			CDKN2A - PALB2	2	PMS2 - NBN	1
H1	1	biallelic <i>MUTYH</i> **	23	MSH2 - NBN	2	biallelc <i>MUTYH</i> **	1
KN2A	1					- ATM	
53	1						
Нб	1						
KN2A	1						
53	1						
JTYH**	1						

RESULTS

- Of 80,829 sequential patients who underwent panel testing, 5,703 (7.1%) had a single pathogenic mutation; 154 (0.19%) had multiple pathogenic mutations.
- Pathogenic mutations were identified in 19 different genes among multiple mutation carriers (Table 1).
- 40 patients had mutations in two high penetrance genes (APC, BRCA1, BRCA2, CDH1, MLH1, MSH2, MSH6, CDKN2A, PMS2, TP53, biallelic MUTYH) (Table 1a).
- 24 patients had mutations in two moderate penetrance genes (Table 1b).
- 67 patients had mutations in both high and moderate penetrance genes (Table 1c).
- 23 patients carried only biallelic *MUTYH* mutations.

Figure 2. Distribution of Genes with Pathogenic Variants in Multiple Mutation Carriers MSH2, 3% _ MSH6, 1% MLH1, 之 APC, 2% _ BRCA1 and BRCA2, associated CDKN2A, 2% _ with HBOC *MUTYH**, 1% __ Other genes associated with *TP53*, 1% ____ breast and/or ovarian cancer RAD51D, 2% _ predisposition RAD51C, 2% _ BRCA2 Genes associated with Lynch Syndrome (*MLH1*, *MSH2*, MSH6, PMS2, EPCAM) CHEK2 Other genes associated with

CDH1. 1% BARD1. 3% *Represents only biallellic *MUTYH* carriers who also had a pathogenic mutation on an additional gene; Patients with only biallelic *MUTYH* mutations are not included.

Table 2. Number of Primary Cancers in Patients with Single vs. Multiple Mutations

Single Mutatior	n (n = 5,703)	Multiple Mutations (n=131)**			
Number of Primary Cancer Diagnoses*	n (%)	Number of Primary Cancer Diagnoses*	n (%)		
0	1820 (31.9%)	0	29 (22.1%)		
1	2747 (48.2%)	1	68 (51.9%)		
2	854 (15.0%)	2	25 (19.1%)		
3	208 (3.6%)	3	7 (5.3%)		
4	55 (1.0%)	4	1 (0.8%)		
5	16 (0.3%)	5	1 (0.8%)		
6	2 (0.04%)	6	0		
7	1 (0.02%)	7	0		
Total Affected	3,883 (68.1%)	Total Affected	102 (77.9%)		

*Patients with more than one primary cancer diagnosis of the same type (e.g. breast) are counted multiple times. Patients with only biallelic *MUTYH* mutations are not included. **Patients with multiple mutations appeared more likely to be affected with multiple cancers, though this did not reach significance (p=0.0881).

Presented at ASCO - June 1, 2015

- Notably, of 23 patients with only biallelic *MUTYH* mutations, 8 had a history of colorectal cancer, 11 had polyps but no colorectal cancer.
- 4 biallelic *MUTYH* carriers had no reported clinical history of colorectal cancer or polyps.
- Breast or ovarian cancer were the most common cancers among the patients with single (45.9% and 11.5%, respectively) or multiple (55.0% and 13.7%, respectively) pathogenic mutations (Figure 1).

- 12/40 only reflected one phenotype.
- Patients with multiple mutations were statistically more likely to be affected with cancer (p = 0.017) (Figure 1, Table 2).

colorectal and/or pancreatic

cancer predisposition

- Patient and family phenotype data was based on health information collected and documented on test requisition forms by ordering clinicians.

- Some cases with two high penetrance gene mutations only manifested the phenotype of one of the genes.
- There was no obvious effect of moderate penetrance genes (e.g., ATM) on high penetrance gene phenotypes.
- A formal, prospective assessment of the impact of moderate penetrance genes, alone and in combination, on carrier phenotype is needed to identify any definitive effect.

RESULTS (continued)

• Given the well-defined phenotype of biallelic *MUTYH* carriers (MAP), patients who carried only biallelic *MUTYH* mutations were excluded from all subsequent analyses.

- 89/131 (67.9%) patients had at least one mutation in BRCA1 or BRCA2.
- 6 had a mutation in both *BRCA1* and *BRCA2* (Table 1a).
- The most common second mutations were in CHEK2, ATM and PALB2 (Figure 2).
- Of 40 patients with mutations in two high penetrance genes:
- 27/40 showed a mixed phenotype, consistent with both.
- Patients with multiple mutations appeared more likely to be affected with multiple primary cancers, although this did not reach significance (p = 0.0881) (Table 2).
- There was no significant difference in age at cancer onset (< or \ge age 50 years) (p = 0.7645).

STUDY LIMITATIONS

CONCLUSIONS

- Discovery of more than one deleterious mutation by multigene panel testing confounds accurate prediction of the phenotype or magnitude of risk.
- Dual mutation carriers were statistically more likely to be affected with cancer.

REFERENCES

1. Daly M, Pilarski R, Axilbund JE, et al. Genetic/Familial High-Risk Assessment: Breast and Ovarian. NCCN Clinical Practice *Guidelines in Oncology*. 2015. http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. 2, Weitzel J, Blazer K, MacDonald D, Culver J, Offit K. Genetics, genomics, and cancer risk assessment: State of the Art and Future Directions in the Era of Personalized Medicine. CA Cancer J Clin. 2011;61(5):327-359.

Abstract # 1514: Contact JWeitzel@coh.org with additional questions.