DETECTION OF LARGE REARRANGEMENTS IN A PAN CANCER **GENE PANEL USING NEXT GENERATION SEQUENCING**

Debora Mancini-DiNardo, PhD; Thaddeus Judkins, BS; Courtney Daniels, BS; Jonathan Craft, BS; Jayson Holladay, BS; Benjamin B. Roa, PhD Myriad Genetic Laboratories, Inc., Salt Lake City, UT

BACKGROUND

- The advent of Next Generation Sequencing (NGS) has facilitated the detection of sequencing variants across multiple genes simultaneously.¹
- To date, however, large deletions and duplications are largely detected by alternative technologies such as Multiplex Ligation-dependent Probe Amplification (MLPA)² and microarray Comparative Genomic Hybridization (CGH).³

METHODS

- A consecutive series of patients who received clinical testing with the pancancer panel between September 2013 and August 2015 were assessed.
- The panel included BRCA1, BRCA2, TP53, PTEN, MLH1, MSH2, MSH6, PMS2, EPCAM, APC, BMPR1A, CDH1, CDKN2A, MUTYH, SMAD4, STK11, CHEK2, PALB2, ATM, NBN, BARD1, BRIP1, CDK4, RAD51C and RAD51D.
- Sequencing and large rearrangement testing was performed for all genes in the panel except EPCAM, for which only large rearrangement analysis of the terminal exons was performed.
- Dosage analysis was performed across gene coding exons and select promoters
- Accurate detection of large rearrangements using NGS requires thorough validation of the technical assay and informatics analysis pipeline.
- Here we describe the detection of large rearrangements (LR) in a clinically validated pan cancer panel test using NGS.

using NGS.

- All LRs were confirmed using targeted microarray CGH, MLPA, or confirmatory PCR and sequencing of the mutant product.
- MLPA was initially used as the primary assay for dosage analysis in PMS2 and CHEK2, which are genes with highly homologous pseudogene regions.
- *PMS2*-specific sequencing analysis and/or long range PCR were used where appropriate to confirm the presence of LRs in *PMS2*.

RESULTS

FIGURE 1. DISTRIBUTION OF PATHOGENIC MUTATIONS AMONG ALL GENES TESTED

- The proportion of clinically significant defects attributable to large genomic rearrangements across 25 genes (Figure 1) was determined to be 9.3% using the methods described above.
- 85.8% of all LRs detected were deletions and 12.5% were duplications (Table 1).

TABLE 1. NUMBER OF PATHOGENIC LR

30% -	Large Rearrangments, N = 864			Sequence Variants, N = 8454								
27% ⁻				 								
24% -												
21% -				 								
18% -				 								
15% -												
12% -												
9% -												
6% -												
3% -												
00/												

AND SEQ. VARIANTS DETECTED BY GENE

	TOTAL LR	TOTAL SEQ.			
APC	11 (8.0%)	127 (92.0%)			
ATM	40 (4.8%)	800 (95.2%)			
BARD1	17 (9.0%)	172 (91.0%)			
BMPR1A	1 (12.5%)	7 (87.5%)			
BRCA1	248 (12.7%)	1700 (87.3%)			
BRCA2	45 (2.2%)	2023 (97.8%)			
BRIP1	11 (3.1%)	342 (96.9%)			
CDH1	7 (12.3%)	50 (87.7%)			
CDKN2A	3 (3.0%)	97 (97.0%)			
CHEK2	86 (8.5%)	931 (91.5%)			
EPCAM	6 (100%)	0 (0%)*			
MLH1	38 (17.0%)	185 (83.0%)			
MSH2	82 (29.8%)	193 (70.2%)			
MSH6	7 (2.1%)	331 (97.9%)			
MUTYH	4 (10.3%)	35 (89.7%)			
NBN	14 (5.7%)	231 (94.3%)			
PALB2	68 (10.4%)	589 (89.6%)			
PMS2	103 (27.0%)	278 (73.0%)			
PTEN	1 (2.9%)	34 (97.1%)			
RAD51C	42 (24.0%)	133 (76.0%)			
RAD51D	7 (9.1%)	70 (90.9%)			
SMAD4	1 (10.0%)	9 (90.0%)			
STK11	6 (42.9%)	8 (57.1%)			
TP53	5 (4.4%)	109 (95.6%)			
MSH2/EPCAM	11 (100%)	0 (0%)*			
TOTAL	864 (9.3%)	8454 (90.7%)			

ATM BRCA1 BRCA1 BRCA1 BRCA1 BRCA1 BRCA1 BRCA2 BRCA1 BRCA2 BRCA1 BRCA2 BRCA1 BRCA2 BRCA2 BRCA1 BRCA2 BRCA2 BRCA1 BRCA2 BR

- Seven distinct insertions were also detected, including the *BRCA2* Portuguese founder mutation (c.156_157insAlu), and five triplications.
- Importantly, there were a large number of clinically significant LRs detected in PMS2, of which 39.8% occurred in exons 11-15 alone, a region that shares significant sequence homology to the pseudogene, *PMS2CL*.
- This finding stresses the importance of being able to accurately detect mutations in this region and distinguish between clinically significant LRs that occur in PMS2, and benign LRs in *PMS2CL*.
- Comprehensive coverage of exonic regions in this NGS assay also facilitated the detection of 18 unique partial deletions.

DISCUSSION

- NGS technology has been demonstrated as a reliable method to detect sequencing variants and has facilitated simultaneous, multigene analysis.
- We have shown that dosage analysis by NGS can accurately detect the presence of genomic LRs in our pan cancer panel test.

• This study shows that LRs constitute a significant proportion of mutations found in

individuals with a personal or family history of hereditary cancer, and should be part of a

comprehensive genetic testing strategy.

REFERENCES

3. Mancini-DiNardo et al. J. Exp. Clin. Cancer Res. 2014;33(1):74.

. Judkins et al. *BMC Cancer*. 2015;15(1):215.

*EPCAM was not sequenced

2. Hömig-Hölzel et al. *Diagn. Mol. Pathol.* 2012;21(4):189-206.

Presented at ASHG - October 8, 2015